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Review



Value Functions

• State Value Function

Vπ(s) = Eπ

[ ∞∑
t=0

γtR(st)
∣∣∣∣ s0=s

]
= R(s) + γ

∑
s′
P(s′|s, π(s)) Vπ(s′)

• Action Value Function

Qπ(s,a) = Eπ

[ ∞∑
t=0

γtR(st)
∣∣∣∣ s0=s,a0=a

]
= R(s) + γ

∑
s′
P(s′|s,a) Vπ(s′)
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Optimality

• Goal

Find the optimal policy given the environment that the
agent is in.

• Planning

If reward function and transition probabilities are known.

• Reinforcement Learning
If reward function and transition probabilities are
unknown.
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Optimality

There exists at most one policy π∗ such that Vπ∗
(s) ≥ Vπ(s) for

all policies π and states s of the MDP.

True (A) or False (B)?
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Optimality

Optimal value functions, Q∗(s,a) and V∗(s) are unique and all
optimal policies share the same value functions.

True (A) or False (B)?
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Optimality

• Theorem

There exists at least one policy π∗ (and perhaps many) such
that Vπ∗

(s) ≥ Vπ(s) for all policies π and states s of the MDP.

• Notation

V∗(s) = Vπ∗
(s)

Q∗(s,a) = Qπ∗
(s,a)

These optimal value functions are unique.
(All optimal policies share the same value functions.)
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Optimality

We can get the optimal policy π∗ from the optimal value
function V∗(s) but not from the optimal action value function
Q∗(s,a).

True (A) or False (B)?
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Relations at optimality

• From the optimal action value function:

V∗(s) = max
a

[
Q∗(s,a)

]
π∗(s) = argmax

a

[
Q∗(s,a)

]
• From the optimal state value function:

Q∗(s,a) = R(s) + γ
∑

s′
P(s′|s,a)V∗(s′)

π∗(s) = argmax
a

[
R(s) + γ

∑
s′
P(s′|s,a)V∗(s′)

]
• Why are these relations useful?

Sometimes it can be easier to estimate Q∗(s,a) or V∗(s)
(which are continuous) than to learn π∗(s) (which is discrete).
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s′|s,a),R(s), γ},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy π∗(s)?
2. the optimal state value function V∗(s)?
3. the optimal action value function Q∗(s,a)?

This is the problem of planning in MDPs.
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Policy Based



Algorithms

1. Policy evaluation

How to compute Vπ(s) for some fixed policy π?

2. Policy improvement

How to compute a policy π′ such that Vπ′
(s) ≥ Vπ(s)?

3. Policy iteration

How to compute an optimal policy π∗(s)?
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Policy evaluation

• How to compute the state value function?

Vπ(s) = Eπ

[ ∞∑
t=0

γtR(st)
∣∣∣∣ s0=s

]

• Bellman equation:

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π(s))Vπ(s′)

• Solve linear system: There are n equations for n
unknowns (where s = 1, 2, . . . ,n).
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Solving the linear system (con’t)

• Solution
R =

[
I− γPπ

]
Vπ =⇒ Vπ = (I− γPπ)−1︸ ︷︷ ︸

matrix inverse

R

• Complexity

It takes O(n3) operations to solve this system of equations.
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Policy improvement

• Problem statement

Given a policy π and its state value function Vπ(s),
how to compute a policy π′ such that

Vπ′
(s) ≥ Vπ(s) for all states s?

• Definition

Given the action value function Qπ(s,a) for policy π, we
define the greedy policy π′ by

π′(s) = argmax
a

[
Qπ(s,a)

]
.
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Greedy policies

• In terms of the state value function:

π′(s) = argmax
a

[
Qπ(s,a)

]
= argmax

a

[
R(s) + γ

∑
s′
P(s′|s,a) Vπ(s′)

]
= argmax

a

[∑
s′
P(s′|s,a) Vπ(s′)

]

• Test your understanding:

π′(s) = π(s) for some s ∈ S? not necessarily

π′(s) 6= π(s) for some s ∈ S? not necessarily

Qπ(s, π′(s)) ≥ Qπ(s, π(s)) for all s ∈ S? TRUE
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Policy improvement

• Greedy policy:

π′(s) = argmax
a

Qπ(s,a)

• Theorem:
The greedy policy π′(s) = argmaxa Qπ(s,a) improves
everywhere on the policy π from which it was derived:

Vπ′
(s) ≥ Vπ(s) for all states s ∈ S

• Intuition:
If it’s better to choose action a in state s before following
π, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from π,
then we’ll extend this inequality by an iterative argument.
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Proof — 1. Deriving the inequality

• Comparing value functions:

Vπ(s) = Qπ(s, π(s))
≤ max

a
Qπ(s,a)

= Qπ(s, π′(s))
= R(s) + γ

∑
s′
P(s′|s, π′(s))Vπ(s′)

• Combining these steps:

Vπ(s) ≤ R(s) + γ
∑
s′
P(s′|s, π′(s))Vπ(s′)

• Intuition:

It is better to take one step under π′, then revert to π,
than to always follow π.
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Proof — 2. Leveraging the inequality

• One-step inequality:

Vπ(s) ≤ R(s) + γ
∑
s′
P(s′|s, π′(s))Vπ(s′)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:

Vπ(s) ≤ R(s)+ γ
∑
s′
P(s′|s, π′(s))

[
R(s′) + γ

∑
s′′

P(s′′|s′, π′(s′))Vπ(s′′)
]

• Intuition:

It is better to take two steps under π′, then revert to π,
than to always follow π.
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Proof — 3. Taking the limit

• Two-step inequality:

Vπ(s) ≤ R(s)+ γ
∑
s′
P(s′|s, π′(s))

[
R(s′) + γ

∑
s′′

P(s′′|s′, π′(s′))Vπ(s′′)
]

• Apply the inequality t times:

It is better to take t steps under π′, then revert to π,
than to always follow π. Last term is of order O(γt).

• Take the limit t→∞:

It is better to follow π′ (always) than to follow π (always).
Conclude that Vπ(s) ≤ Vπ′

(s) for all states s ∈ S .
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Policy iteration

How to compute π∗?

1. Choose an initial policy π : S → A.

2. Repeat until convergence:

Compute the action value function Qπ(s,a).
Compute the greedy policy π′(s) = argmaxa Qπ(s,a).
Replace π by π′.

π0
evaluate
−−−−→ Vπ0 (s)

Qπ0 (s, a)
improve
−−−−→ π1

evaluate
−−−−→ Vπ1 (s)

Qπ1 (s, a)
improve
−−−−→ · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?
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Policy iteration

• How to compute π∗?

π0
evaluate
−−−−−−→ Vπ0(s)

Qπ0(s,a)
improve
−−−−−−→ π1

evaluate
−−−−−−→ · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If π′(s) = argmaxa Qπ(s,a) and Vπ′
(s) = Vπ(s) for all s ∈ S ,

then Vπ(s) = V∗(s) for all s ∈ S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t→∞.
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Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to π′.

Vπ′
(s) = R(s) + γ

∑
s′
P(s′|s, π′(s))Vπ′

(s′) Bellman equation

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π′(s))Vπ(s′) at convergence

Now exploit that π′ is greedy with respect to π ...

• Bellman optimality equation

Vπ(s) = R(s) + γmax
a

∑
s′
P(s′|s,a)Vπ(s′)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).
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Proof — 2. Inequality

• Let π̃ be any policy of the MDP:

Vπ̃(s) = R(s) + γ
∑
s′
P(s′|s, π̃(s))Vπ̃(s′) Bellman equation

Vπ̃(s) ≤ R(s) + γmax
a

∑
s′
P(s′|s, a)Vπ̃(s′) greedy

• Compare to Bellman optimality equation (BOE):

Vπ(s) = R(s) + γ max
a

∑
s′
P(s′|s, a))Vπ(s′)

• Understanding the difference:

The inequality holds for any policy π̃ of the MDP.
The BOE only holds for a solution π from policy iteration.
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Proof — 3. Taking the limit

• Iterating the inequality:

Vπ̃(s) ≤ R(s) + γmax
a

∑
s′
P(s′|s, a)Vπ̃(s′)

≤ R(s) + γmax
a

∑
s′
P(s′|s, a)

[
R(s′) + γmax

a′

∑
s′′
P(s′′|s′, a′)Vπ̃(s′′)

]

• Iterating the BOE:

Vπ(s) = R(s) + γmax
a

∑
s′
P(s′|s, a)Vπ(s′)

= R(s) + γmax
a

∑
s′
P(s′|s, a)

[
R(s′) + γmax

a′

∑
s′′
P(s′′|s′, a′)Vπ(s′′)

]

• Iterating t times:

Both right sides agree up to term of order γt.
Taking the limit t→∞, we find Vπ̃(s) ≤ Vπ(s) for all s ∈ S .

Since π̃ is arbitrary, we conclude that π is optimal .
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Value Iteration



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s′|s,a),R(s), γ}, recall how its
optimal policies and value functions are connected:

π∗(s) = argmax
a

[
Q∗(s,a)

]
= argmax

a

[
R(s) + γ

∑
s′
P(s′|s,a) V∗(s′)

]
So if we can directly compute the optimal value function V∗(s),
then we can use it to derive an optimal policy π∗.
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Bellman optimality equation

• Derivation:

V∗(s) = max
a

[
Q∗(s,a)

]
= max

a

[
R(s) + γ

∑
s′
P(s′|s,a) V∗(s′)

]
• Solution?

Suppose we know the parameters {R(s),P(s′|s,a), γ}.
Then the above gives us n equations for n unknowns:

V∗(s) = max
a

[
R(s) + γ

∑
s′
P(s′|s,a) V∗(s′)

]

But how to solve these nonlinear equations for V∗(s)?
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Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V∗(s) = max
a

[
R(s) + γ

∑
s′
P(s′|s,a) V∗(s′)

]
BOE

Vnew(s) ←− max
a

[
R(s) + γ

∑
s′
P(s′|s,a) Vold(s′)

]
algorithm

• Why this might work

The value function V∗(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?
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Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s ∈ S .

2. Iterate until convergence:

Vk+1(s) = max
a

[
R(s) + γ

∑
s′
P(s′|s,a) Vk(s′)

]
for all s ∈ S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + γ
∑
s′
P(s′|s,a) Vk(s′),

π∗(s) = lim
k→∞

argmax
a

Qk(s,a).
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Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).
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That’s all folks!
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